Abstract:Humans have the tendency to discover and explore. This natural tendency is reflected in data from streaming platforms as the amount of previously unknown content accessed by users. Additionally, in domains such as that of music streaming there is evidence that recommending novel content improves users' experience with the platform. Therefore, understanding users' discovery patterns, such as the amount to which and the way users access previously unknown content, is a topic of relevance for both the scientific community and the streaming industry, particularly the music one. Previous works studied how music consumption differs for users of different traits and looked at diversity, novelty, and consistency over time of users' music preferences. However, very little is known about how users discover and explore previously unknown music, and how this behavior differs for users of varying discovery needs. In this paper we bridge this gap by analyzing data from a survey answered by users of the major music streaming platform Deezer in combination with their streaming data. We first address questions regarding whether users who declare a higher interest in unfamiliar music listen to more diverse music, have more stable music preferences over time, and explore more music within a same time window, compared to those who declare a lower interest. We then investigate which type of music tracks users choose to listen to when they explore unfamiliar music, identifying clear patterns of popularity and genre representativeness that vary for users of different discovery needs. Our findings open up possibilities to infer users' interest in unfamiliar music from streaming data as well as possibilities to develop recommender systems that guide users in exploring music in a more natural way.
Abstract:The increasing availability of user data on music streaming platforms opens up new possibilities for analyzing music consumption. However, understanding the evolution of user preferences remains a complex challenge, particularly as their musical tastes change over time. This paper uses the dictionary learning paradigm to model user trajectories across different musical genres. We define a new framework that captures recurring patterns in genre trajectories, called pathlets, enabling the creation of comprehensible trajectory embeddings. We show that pathlet learning reveals relevant listening patterns that can be analyzed both qualitatively and quantitatively. This work improves our understanding of users' interactions with music and opens up avenues of research into user behavior and fostering diversity in recommender systems. A dataset of 2000 user histories tagged by genre over 17 months, supplied by Deezer (a leading music streaming company), is also released with the code.
Abstract:Recommender systems rely heavily on user feedback to learn effective user and item representations. Despite their widespread adoption, limited attention has been given to the uncertainty inherent in the feedback used to train these systems. Both implicit and explicit feedback are prone to noise due to the variability in human interactions, with implicit feedback being particularly challenging. In collaborative filtering, the reliability of interaction signals is critical, as these signals determine user and item similarities. Thus, deriving accurate confidence measures from implicit feedback is essential for ensuring the reliability of these signals. A common assumption in academia and industry is that repeated interactions indicate stronger user interest, increasing confidence in preference estimates. However, in domains such as music streaming, repeated consumption can shift user preferences over time due to factors like satiation and exposure. While literature on repeated consumption acknowledges these dynamics, they are often overlooked when deriving confidence scores for implicit feedback. This paper addresses this gap by focusing on music streaming, where repeated interactions are frequent and quantifiable. We analyze how repetition patterns intersect with key factors influencing user interest and develop methods to quantify the associated uncertainty. These uncertainty measures are then integrated as consistency metrics in a recommendation task. Our empirical results show that incorporating uncertainty into user preference models yields more accurate and relevant recommendations. Key contributions include a comprehensive analysis of uncertainty in repeated consumption patterns, the release of a novel dataset, and a Bayesian model for implicit listening feedback.
Abstract:Music streaming services often leverage sequential recommender systems to predict the best music to showcase to users based on past sequences of listening sessions. Nonetheless, most sequential recommendation methods ignore or insufficiently account for repetitive behaviors. This is a crucial limitation for music recommendation, as repeatedly listening to the same song over time is a common phenomenon that can even change the way users perceive this song. In this paper, we introduce PISA (Psychology-Informed Session embedding using ACT-R), a session-level sequential recommender system that overcomes this limitation. PISA employs a Transformer architecture learning embedding representations of listening sessions and users using attention mechanisms inspired by Anderson's ACT-R (Adaptive Control of Thought-Rational), a cognitive architecture modeling human information access and memory dynamics. This approach enables us to capture dynamic and repetitive patterns from user behaviors, allowing us to effectively predict the songs they will listen to in subsequent sessions, whether they are repeated or new ones. We demonstrate the empirical relevance of PISA using both publicly available listening data from Last.fm and proprietary data from Deezer, a global music streaming service, confirming the critical importance of repetition modeling for sequential listening session recommendation. Along with this paper, we publicly release our proprietary dataset to foster future research in this field, as well as the source code of PISA to facilitate its future use.
Abstract:While the topic of listening context is widely studied in the literature of music recommender systems, the integration of regular user behavior is often omitted. In this paper, we propose PACE (PAttern-based user Consumption Embedding), a framework for building user embeddings that takes advantage of periodic listening behaviors. PACE leverages users' multichannel time-series consumption patterns to build understandable user vectors. We believe the embeddings learned with PACE unveil much about the repetitive nature of user listening dynamics. By applying this framework on long-term user histories, we evaluate the embeddings through a predictive task of activities performed while listening to music. The validation task's interest is two-fold, while it shows the relevance of our approach, it also offers an insightful way of understanding users' musical consumption habits.
Abstract:The traditional recommendation framework seeks to connect user and content, by finding the best match possible based on users past interaction. However, a good content recommendation is not necessarily similar to what the user has chosen in the past. As humans, users naturally evolve, learn, forget, get bored, they change their perspective of the world and in consequence, of the recommendable content. One well known mechanism that affects user interest is the Mere Exposure Effect: when repeatedly exposed to stimuli, users' interest tends to rise with the initial exposures, reaching a peak, and gradually decreasing thereafter, resulting in an inverted-U shape. Since previous research has shown that the magnitude of the effect depends on a number of interesting factors such as stimulus complexity and familiarity, leveraging this effect is a way to not only improve repeated recommendation but to gain a more in-depth understanding of both users and stimuli. In this work we present (Mere) Exposure2Vec (Ex2Vec) our model that leverages the Mere Exposure Effect in repeat consumption to derive user and item characterization and track user interest evolution. We validate our model through predicting future music consumption based on repetition and discuss its implications for recommendation scenarios where repetition is common.
Abstract:Transformers emerged as powerful methods for sequential recommendation. However, existing architectures often overlook the complex dependencies between user preferences and the temporal context. In this short paper, we introduce MOJITO, an improved Transformer sequential recommender system that addresses this limitation. MOJITO leverages Gaussian mixtures of attention-based temporal context and item embedding representations for sequential modeling. Such an approach permits to accurately predict which items should be recommended next to users depending on past actions and the temporal context. We demonstrate the relevance of our approach, by empirically outperforming existing Transformers for sequential recommendation on several real-world datasets.
Abstract:Repetition in music consumption is a common phenomenon. It is notably more frequent when compared to the consumption of other media, such as books and movies. In this paper, we show that one particularly interesting repetitive behavior arises when users are consuming new items. Users' interest tends to rise with the first repetitions and attains a peak after which interest will decrease with subsequent exposures, resulting in an inverted-U shape. This behavior, which has been extensively studied in psychology, is called the mere exposure effect. In this paper, we show how a number of factors, both content and user-based, well documented in the literature on the mere exposure effect, modulate the magnitude of the effect. Due to the vast availability of data of users discovering new songs everyday in music streaming platforms, these findings enable new ways to characterize both the music, users and their relationships. Ultimately, it opens up the possibility of developing new recommender systems paradigms based on these characterizations.